【題目】以點A為頂點作等腰RtABC,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE,延長BDCE于點F.

1)試判斷BD、CE的關(guān)系,并說明理由;

2)把兩個等腰直角三角形按如圖2所示放置,(1)中的結(jié)論是否仍成立?請說明理由.

【答案】1CEBD,見解析;(2)仍然成立,見解析.

【解析】

1)根據(jù)SAS證明EACDAB全等,再利用全等三角形的性質(zhì)解答即可;

2)先利用全等三角形的性質(zhì)得出根據(jù)(1)中的證明步驟解答即可

解:證明:(1,且CEBD.理由如下:

∵等腰,等腰,

,

中,

,

,

;

EAC≌△DAB ,

,

,

,

,

CEBD

2)仍然成立.

∵等腰,等腰

,

中,

,

∴△EAC≌△DAB,

,

CEBD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,ABOB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則St之間的函數(shù)關(guān)系的圖象為下列選項中的(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近流感高發(fā)期,在預(yù)防流感期間學(xué)校堅持天天消毒,下圖是某次消毒時教室內(nèi)空氣中消毒液濃度 y(單位:毫克/立方米)隨時間 x(單位:分鐘)的變化情況圖.從開始噴藥到噴藥結(jié)束的 10 分鐘內(nèi)(包括第十分鐘),y x 的二次函數(shù);噴藥結(jié)束后(從第十分鐘開始),y x 的反比例函數(shù).

1)如果點 A 是圖中二次函數(shù)的頂點,求二次函數(shù)和反比例函數(shù)的解析式 (要寫出自變量取值范圍);

2)已知空氣中消毒液濃度 y 不少于 15 毫克/立方米且持續(xù)時間不少于 8 分鐘才能有效消毒,通過計算,請你回答這次消毒是否有效?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團組織的暑假實踐活動,但只有一個名額,小亮提議用如下的辦法決定誰去等加活動:將一個轉(zhuǎn)盤9等分,分別標上1至9九個號碼,隨意轉(zhuǎn)動轉(zhuǎn)盤,

若轉(zhuǎn)到2的倍數(shù),小亮去參加活動;轉(zhuǎn)到3的倍數(shù),小芳去參加活動;轉(zhuǎn)到其它號碼則重新特動轉(zhuǎn)盤.

(1)轉(zhuǎn)盤轉(zhuǎn)到2的倍數(shù)的概率是多少?

(2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC中,BD,CE分別是AC,AB邊上的高,BQAC,點FCE的延長線上,CFAB,求證:AFAQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,RtABCRtEDFACB=F=90°,A=E=30°EDF繞著邊AB的中點D旋轉(zhuǎn), DE,DF分別交線段AC于點M,K

1)觀察: ①如圖2、圖3,當∠CDF=0° 60°時,AM+CK_______MK(“>”,“<”“=”)

②如圖4,當∠CDF=30° 時,AM+CK___MK(只填“>”“<”)

2)猜想:如圖1,當CDF60°時,AM+CK_______MK,證明你所得到的結(jié)論.

3)如果,請直接寫出∠CDF的度數(shù)和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=+bx+c的圖象經(jīng)過A2,0)、B0,6)兩點.

1)求這個二次函數(shù)的解析式;

2)求當x滿足什么條件時,函數(shù)值大于0?;

3)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BABC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AEBC于點E,FAB邊上一點,連接CF,交AE于點G,CFCBAE

1)若ABBC,求CE的長;

2)求證:BECGAG

查看答案和解析>>

同步練習冊答案